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ON DISCRETE WAILURE MODLS

V. J. adgSett and John D. Spurrier

ftiversity of South Carolina, Colubia

Rev Words - Discrete hazard functions; Increasing failure rate;

Decreasing failure rate; Discrete life data; Maaim likelihood estimation.

Su .a" I Conclusions: 'In some situations, discrete failure time

distributions are more appropriate to model lifetimes than continuous dis-

tributions. Very few results for the discrete case have been given in the

literature. This paper provides three families of die rete araet ic life-
time distributions which are quite versaftile nf fitt FR)k and constant "-

failure rate models to either uncensored or right-censored life-test data.

The mimum likelihood esti E i-of parameters, survival probabilities, and

mean lifetimes is Investigated, and the KLEs are shou-a to be easily computed

by simple numerical methods. An exa-nle is given for each of the models,

allowing the comparison of the proposed models. The example Illustrates that

the discrete models presented r e&=a provide a better fit to discrete data

than previously proposed discrete distributions. k
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1. INTRODUCTION

A great amount of research has been performed for continuous life

distributions. However, very little has appeared in the literature for

* discrete failure models. Discrete failure data arise in several common

situations: (1) A device can be monitored only once per time period (an

hour, a day, etc.), and the observation taken is the number of time periods

-successfuly completed-prior to the failure of the device, (ii) A piece of

equipment may operate in cycles, and the experimenter observes the number

of cycles successfully completed prior to failure. Many other examples may

be cited.

In situations vhere the observed data values are very large, in thousands

of cycles, etc., a continuous distribution can be an adequate model for the

discrete random variable. For example, the Birnbaum-Saunders [3] distribu-

tion arises in connection with fatigue failure due to bending of uetal alloys.

However, when the observed values are small, a continuous distribution may not ,.

adequately describe a discrete random variable, and an appropriate discrete

failure model is desirable.

A few results on discrete life distributions have appeared in the liters-

ture. Lalbfleisch & Prentice [5, Ch. 2] briefly discuss discrete failure

distributions that may be obtained from well-known continuous distributions

such as the exponential or Weibull. Langberg, Leon, Lynch 4 Proschan [5,6]

examine properties of the classes of discrete DFR and DFRA distributions.

Salvia & Bollinger [9] consider the properties of discrete hazard functions

and analogies with the continuous case. Barlow, Bartholomew, Brener & Brunk

[1] give a nonparametric estimate of an IFR function using isotonic regression
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techniques* Their estimate is easily modified for DFR functions and to allow

* for censoring.

The purpose of this paper Is to further examine discrete hazard functions

in a parametric setting. Estimation for the discrete hazard functions given

* by Salvia 4 Bollinger (9] will be discussed for both uncensored and censored

lifetime data in Section 2. In addition, some other parametric discrete

----- failure models will be-proposed and estimation for tim will be studied in

Sections 3 and 4. It should be noted that meaningful discrete parametric

models generally present difficult estimation problems and may not be founded

on a theoretical basis [5, p. 36]. However, such models are still quite

Important for discrete failure data.

Notation

lLE Maximum Likelihood Estimator

IFR Increasing Failure Rate

" DFR(A) Decreasing Failure Rate (Average)

f pml{k) m Pr{X - k)

sk Sf{k) - Pr(X k k)

b discrete hazard, fk/Sk

k1 ,...,k random sample of n observations on a discrete random variable X

oQ a parameter and its MU-

F a cumulative distribution function

E(X) expectation of the random variable X

L, In L a likelihood function and its natural logarithm

2. THE MODELS OF SALVIA AND BOLLINGER

Salvia 6 Bollinger [9] developed some results for discrete failure models

analogous to the theory of the continuous case. Some of their results follow.
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The discrete hazard rate (or failure rate) Is related to the puf by

bk - fkl(fk+fk+1 +...) and f 0o ho' 0 l h1(lh0 )9".:.

f b (lho)(lhi) "'" (l-hk-)" Similarly the discrete Sf is

S k - (1-h0)(l-h 1 ) ... (1-hk.) for k - 1,2,.... The mean life, if It exists,

k-i
Is E(X) - k Sk " 1 1 (l-h.). It should be noted that using Fort

ki k il J-0
[4, p. 32-33], E(X) exists if there exists an E > 0 and an a such that

for k > m, k[hk /-h) >1 + t. If for k >m, kI/¢l(-hk)] S 1, then

E(X) does not exist. Some other results analogous to continuous failure models

were also given in [9] for certain situations. For example, for a distribution with

IFR, h S h h S..., S (1-h)k and M() S (1-h )ho These inequalitiesh0  h1  h2  k 0-o)0 o

are reversed for DFR distributions.

Salvia & Bollinger [9] also gave illustrations of discrete parametric

failure models for the constant failure rate, IFR, and DFR cases.

a. Constant Failure Rate. For b. - c, a constant 0 < c S 1 for all

kk-0,2,..., = f c(-c) , a geometric distribution which Is the discretefk

analog of the exponential distribution. We will give the ILE of c for the

three cases of a complete random sample kl,..okn from fk' a type II censored

sampleand a type I censored sample.

For a complete random sample, the log-likelihood is Ln L(c; k ,...,k) .
n

n Ln C + ki  n(l-c), which is uniquely maximized by c - n/(n + k1 ).

Bence, the HLE of S i s Sk - (1-c k=,1,2,...

For a type II censored sample, denote k( 1 ) - mi nkl,...,knj.k(2) =

next smallest of {kl.k . kr - ro_.kh smallest of {kl...kn)"

where some of the k 'a may be equal. If t4s items fail at or before

k(r), m-,O,...,n-r, the log-likelhood 1e..

I

k ..) U-#00o-,te.o-1eiodI
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La c; kl,.kal (r'4u)An c

:. + ( kli + l-r-u) (klr+l)lln(l-c) ,..

which Is uniquely maximized by

c (r+m)/[(r+m) + k + (n-r-m)(k +1)]. (2.1)

For a-type I censored sample. where the life test-is -trminated after A

fixed number of "cycles" or time units T, the log-likelihood function is
r

An L(c; k ...,k ) * L n fk + (n-r)In S, where r is the observed number

of failures by the end of T cycles. The HLE c for this case is similar to

(2.1) and is omitted. In fact, the expressions in An L for arbitrarily

right-censored data, which includes type I and type I censoring, have the

same general form for this or any of the discrete models which follow.

b. At IF Distributions For k .1 - c/(k+l), k=0,1,2,,.., 0 5 c S 1,

k
f (k-c+l)c /(k+l)!, an IFR distribution.

c. A DFR Distribution. For = c/(k+l), k=0,l,2,..,, 0 ' c 5 1,

fk = c(l-c)(2-c)...(k-c)/(k+l)', a DFR distribution.

We have found that these IFR and DFR distributions are not sufficiently

flexible to fit a wide variety of settings. For example, for the IFR distri-

bution the MLE C - 1 if all ki's > 0, regardless of the values of the k 18,

For the DFR distribution E(X) exists only for c-l. Generalizations of these

distributions and estimation results are given in Section 4.1.

3. DISCRETE FAILURE MODELS FROM CONTINUOUS DISTRIBUTIONS

Kalbfleisch 4 Prentice [5, pp. 35-36] indicate that failure time dat4 are

sometimes discrete either because of the grouping of continuous date due to

_ _ _ ..1



Imprecise measurement or because time itself Is discrete. They also give

discrete distributions based on grouping data from continuous distributions

Into unit Intervals. For example, If we begin with the Weibull distribution

weif (Bt;s)- I - exp(-(Bt) ), t k 0, then the discrete distribution obtained

by setting fk w eif (S(k+l);a) - veif (Bk;o) - exp(-Ok) ) - exp(-(S(k+l)) ),

k-0,1,2,..., is a distribution for grouped failure data. If o - 1, f
k

becomes f exp(-Bk)(l-exp(-6)) c(l-c) k k-0,1,2,..., where c l-exp(-O),

which is the geometric model (a) of Salvia & Bollinger [9). If o < 1, a

discrete DFR distribution is obtained, and if a > 1, fk is an IFR distribution.

More generally, it is easy to show that if a continuous IFR(DFR) distri-

bution is used to generate a discrete distribution fk' then fk is also

IFR(DFR). However, the class of continuous distributions giving rise to discrete

IFR, DFR, or constant failure rate distributions is not restricted to being

IFR, DFR, or constant failure rate, respectively. For example, the pdf g(x) -

B exp(-Bx) + 2 exp(-B(k43i)) - 2 exp(-B(k+l)), k S z S k + , and g(x) - 0,

k + 3S < z < k+l, k-0,1,2,... (and g(z) - 0, z < 0) does not have constant

failure rate, IFR, nor DFR, yet fk - exp(-Bk)(1-ezpC-B)), k-0,1,2,..,, which

has constant failure rate, as before.

4. SOME PROPOSED DISCRETE PARAMETRIC FAILURE MODELS

We propose some more general discrete failure models than those of Salvia

& Bollinger [9]. First, a generalization of their IFR and DFR models which were

mentioned in Section 2 is given and maximum likelihood estimation of the para-

meters is investigated. Then a discrete failure model which can have increasing,

decreasing, or constant failure rate according to the values of one of Its

,. parameters Is presented, and estimation of the parameters Is considered.

i Z -~__ _ -



It should be noted also that some of the well-known distributions, in

addition to the geometric distribution, may be useful in modeling discrete

life data. For example, It may be easily shown directly, or using the results

on pp. 76-77 of Barlow & Proachan [2], that the Poisson distribution is an

IFR distribution.

4.1 Generalized Salvia and Bollinuer Models

The IFR and DFI.odels of Salvia & Bollinger [9] given in_Section 2 will

be generalized by the addition of a second parameter a. When 0-1 the

models reduce to those in Section 2. When 0-0 the models reduce to the

constant failure rate model of Section 2.

The IFR Case (Model 1)

Let hk - 1 - c/(oxk+l), k-0,1,2,..., (0 • c S 1, 0 S a). The pmf is
kk

f a (mk+l-c)ck/ k (joi_), k-0,1,2,..., and the Sf is
kJ-0

S - c / I1 (czj+l), k-1,2,... . As a * , the model approaches the Bernoulli
J -0".-.

model with f =i-c and f c. As c 0,"the model approaches the degenerate
f 1 -

distribution with f. a. The parameter c PX > 0) and a Is a shape
0r

2
1parameter. The pm! is nonincreasing in k If c > % and o S (c-1) /(2c-1)

or if c S Ij. Otherwise, the pm! increases and then decreases In k. Figure 1

shows the pmf's for some values of a and c.

We now consider the estimation of the parameters from an observed random

sample kl..ekn from f The log-likelihood function is
* - n (4..1

UL k Luc + W nak I+ l-C) -ln(jo~tl). (41)
i-i1-1 i-1 J-0

The ca. -
Three cases will be considered.:-.

I.I

kI
p1
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Case 1: a Known. If all k1 , 0, then tnt - n n(1-c), which gives

c - 0. Next, if at least one k1 > 0, from (4.1.1)

-r LnL ,l k /c- 1 /(ek +1- ). (4.1.2)i-i 1-1 ?-;2
ai

Then 2 LnL < 0 for all 0 < c < 1. It follows from examining the limits2
ac2

of (4.1.2) as c 0 and c 1 that there is a unique value c which
mximizes (4.1.1). If all k > 0 and a S (1/ki) / k ki, then c 1.

Otherwise, c may be approximated by solving - ALn = 0 for c using

the Newton-Raphson procedure.

Case ii: c Known. If all k Is - 0, then (4.1.1) does not involve a.

Hence, a is arbitrary. If at least one ki > 0, then Int 0 may or

may not have a solution for o.

Case iii: Both a and c Unknown. If all k 's 0, then c-0 and a

is arbitrary. Next, if no ki's - 0 and the remaining k's - 1, then

c - n-0)/n and a - + a. Finally, if at least one ki > 1, it is difficult,

if not impossible to show that unique XLE's always exist. However, it is

possible to find the unique value of c which maximizes (4.1.1) for fixed a.

A line search of the variable a can then be performed to obtain an approximate

maximu for (4.1.1).

For the cases of type I and type II censoring, the MLE's for this model

are obtained in the same manner. For type I censoring after T cycles, the

log-likelihood function is

A nt- Ln (c) [(n-r) + k (,1) 1+ In Iok(1co+1I -c)

(4.1.3)

_ I t) (aj+l) - (a-r) I a(aJ+l).T-
1-1 J-0 i-0

.- .- . .- . . . , . . . .



For type 11 censoring vith r4m failures at or before kr ) , w0,1,...*u-r,

the log-likelihood is

mrr U+r

-il, An(c)[(n-i-r)(k +1) + 1 k( )I + i Ln(ak()+1-c)

-I 0 )ncta+l) - (n-m-r))(r) Ln(ja+l).

i-i J-0 J-0

* The derivatives of (4.1.3) and (4.1.4) have the same behavior as those of (4.1.1).

so the MLE's may be obtained numerically as described for uncensored data.

The mean lifetime for this model from the formula in Section 2 is

k 1
E(X) - c / D (oj+1) which may be easily calcultee'd to

k-i J-0

any desired degree of accuracy by summing an appropriate number of terms of the

series. An estimate of E(X) Is found by replacing o and c by a and c.

The DFR Case (Model 2)

m  Let hk - c/(ak+l), k=0,1,2,..., (0 C c S 1, 0 s 0). The pmf is f0-c

and
Kk-i k

f = C (j -c) / 1(Jc+l)9 k-1.2,...$
k J.0 -0

S . k-i -1
and the Sf is Sk : T (otj+l-c)/(aj+l). vhere TI 1. As c * 1, the

-0 J-0
,odel approaches the degenerate distribution vith f M 1. The parameter

0
c - Pr{X -0) and a is a shape parameter. The pin is decreasing in k for

all a and c. Figure 2 shows the pmf's for various choices of a and c.

We now consider the estimation of the parameters from an observed random

sample k....k, from f The log-likelihood function is
n k' n k

.LnL - nJlnc + tn(Ja+l-c) - t Ln(jc+l), (4.1.5)

-1 -D11 -

wbere 3 -0.
J-0



The results for maximizing (4.1.5) are analogous to the IFR case. :f a is

known, there Is a unique 0 9 cQ 1 which maximizes (4.1.5). Thi& c can

be approximated by the Nevton-Raphson procedure. If c is known, then

LnL 0 0 may or may not have a solution. If both a and c are unknown,

then an approximate maximum for (4.1.5) is found by performing a le search

on a with c c*.

For the eases of type I and type- l censoring the MC.E' are ol tained in --

the same manner. For t -pe I censoring after T cycles, the log--. lelihood

function is

nL -TrUc + L [ 0)-c -

1=1 j1o j=o ( .1.6) -

T-1
+ (n-r) I 1n[(qj+l-c)/(a.j+l)].

juMO

For type 11 censoring with zft failures at or before k(r), 3-0,),...n-r,

the log-likelihood is

InL - (m+r)inc + I I)
1-1 0 j=0

(t.1,7)

+ (n-m-r) (r) Lu[(oj+l-c) / (*j+1)].
J = O" "

The PL.Es may be obtained numerically as for uncensored data.

Using the results in Section 2, E(X) exists If c-l or 1 > c : a

and does not exist if c 9 a and c~l. If c > a, then the mean Iifetiue

may be easily approximated by miming an appropriate nu.ber of terms of
-k-1

Z(X) - I 11 (oj+l-c) / (aj+l). An estimate of E(X) Is found by replacing
k-l JmO

a and c by C and .^,

S

"' - : i . .' 1-" '. ; -i .- '. i'-i .. " " i' .i i " " " ' ' " "- . " . .. -. ..' •
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4.2 A Discrete "Veibull Hazard" Model .(Model 3)

Let hk - 1 - exp(-c(k+l)), k-0,1,2,..., (c • 0, -0 1 a < ). Since

this hk Is similar to the Weibull Cdf, we will call this the discrete

Weibull hazard model, or Model 3. Thus the puf Is

k

fk (1-exp(-c(k+) )) 1exp(-ci )

k
axp(-c i), k0,1,2,.."

k 0
and the Sf is Sk - ezp(-c i0), k-l,2,..., where 0.

note that for s-0, this model reduces to the constant failure rate model

of Section 2. For a > 0, the distribution has IFR, and for a < 0, it has

DFR. Thus, this discrete model is quite flexible vith respect to choice of

failure rate, analogous to the Weibull distribution in the continuous case.

The parameter a is essentially a shape parameter and c is a "spread"

parameter. For small values of c, the probability is spread out in the tail

of the distribution, vhereas for large c, most of the probability is at k-0.

For example, for c-5, f0  0.9933. For a < 0, the pmf is always decreasing

in k. For a > 0, the pmf is either decreasing or first increasing and then

decreasing in k. In particular, for small c, the largest fk is at large

values of k. For example, for a - 0.5, c = .01, the largest value of fk

is at k-13. Figure 3 shows the pmf's for some values of a and c. It appears

* that for various values of c : 0, a In the range -1 S a S 1 is sufficient

to describe many IFR, DFR, or constant failure rate discrete distributions.

We now consider the estimation of the parameters from an observed random

sample k....,kn from f The log-likelihood function is
U a k

JUL n[l-ep(-c(k 1 +l)J -c C 1 . (4.2.1)

1-1 1- aul

* K 1<~'~....................**
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* Three cases viii be considered.

Case 1: * Known. If at least one k )0, from (4.2.1)

DLnL -I(k 1 l)/ [exp (c (k+l)0  1] - a*I ji 42

Then. a~ 2n L c 0 for all c > 0, and as c -o-0, (4.2.2) approaches. +.

whereas as c 4, 40 (4.2.2) approaches a negative constant. Bence, there is

_a uniqueIC.E for c. This ?LE can be found by solving11  LUL 0nnumerically

p using Nevton-Raphson iteration.

If ki a 0 for all i-,.,,then In L does not involve a and is

an Increasing function of c. Bence, c - + and a is arbitrary. These

estimates correspond to f I and f- 0, k>0
0 k 0

Case ii: c Known. For any fixed value of c. it can be shown that there

exists at least one solution Ito -JtuL - 0 for a if at least one k > 1.

The solution may not be unique. If all k - 0, InL does not Involve a,

so aL Is arbitrary. Finally, if all k Ia 1s or some k I'a 0 and the

*remaining k1 's - 1, then there may be no finite value for ct.

II

if not Impossible, to show that unique NLEs always exist. However. It is

possible to find the unique values of c which maximize (4.2.1) for fixed

values of a using the Newton-Raphson procedure for solving - InL -0.

A line search on the variable a can then be performed to obtain an approximate

maximum for (4.2.1).

* For the cases of type I and type It censoring, the KL~s for this failure

model are obtained In the same manner as just described. For type I censoring

after T cycles, the log-likelihood function Is



-~~~ ~ .. . . . . . .- .- . . ._ ___.

12

rr k,
S al, n[llexp(-c)(k +1)% - c 1 dJ c-

1-1 i-i J-1

T
- c(n-r) . (4.2.3)

For type 11 censoring with r4m failures at or before k(r) m,,...,n-r,

the log-likelihood is

r45 r+m k ..
LUL,- j ln[1-exp(-c(k +l) 0 )]- c C IL*' -

k +1
t-1 (r)  --

- c(n-r-=)- 1(r)+?. (4.2.4)

The derivatives of (4.2.3) and (4.2.4) have the same behavior as those of

(4.2.1),so the )fLEs may be obtained numerically as described for uncensored data.
k

The mean lifetime for this model is E(X) = exp(-c . By the
k-l J-i

results referenced in Section 2, E(X) exists for all c > 0 and a > -1

and does not exist when a < -1 for any value of c > 0. For a - -1, E(X)

exists when c > I but does not exist for c 5 1. When E(X) exists, it may

be easily obtained to any desired degree of accuracy by summIng an appropriate

number of terms in the series. An estimate of E(X) can be found by using

a and c. For a < 0 (DFR), a lover bound for E(X) is exp(-c)/[l-exp(-c)],

which can be estimated by replacing c with c. For a > 0 (IFR), this quantity

is an upper bound for E(X).

5. EXAMPLES

Nelson [8] reported times to breakdown in minutes of an insulating fluid
V --

subjected to various test voltages. We took as an example the failure times

at 36 W' and reduced each observation to the next lowest integer, which corres-

ponds to observing the life test once per minute and recording the lifetime as

Ike if the breakdown occurred In time interval [kk+l). Nelson 18] assumed -

.* ...- -

'' -' " ' ' ' " -. .- ' -' " -" - ' " ' - . . .m .W " : , , . . . .
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an underlying Welbull distribution for the continuous failure times. As

examples, ve will consider estimation from this data for the "discrete Weibull"

model of Section 3, Models 2 and 3 of Section 4, and the nonparametric DFR

model of Barlow, Bartholomev, Bremner, and Drunk [1).

The data that we use, as adapted from Nelson [8] for 36kV, are:

0,00,00l,l,2,2,2,2,3,3,5,13,25 (minutes before failure). The computed MLEs of

parameters, pmfu, Sfs, discrete hazards, and mean lifetimes for the various

models are shown for comparison in Table 1. A hazard plot of these 15 observa-

tions indicated that the life distribution is DFR. This is supported by the

tL.E of a in the "discrete Weibull hazard" model (Model 3) which was a -.391.

It can be seen from Table 1 that the nonparametric DFR model yields the

largest value for InL. This is to be expected since maximization of LnL *

is done over all DFR distributions (including the other models in Table 1).

The nonparametric model has two drawbacks, particularly vhen the number of
"

failures is small. First, the estimate of the hazard function, bke decreases

at k only if there is an observed failure at k. Secondly, for k larger

than the largest failure time, hk is not uniquely defined. For the purposes

of TableI h1 h25  for k 25.

The three parametric models yield similar estimates of the failure distri-

bution. We make the following distinctions among the models. In terms of

* n., Model 2 performs the best for this data. Calculation of the estimators

Is more complicated for the discrete Weibull model than for Models 2 and 3.

Model 3 and the discrete Weibull model are more flexible than Model 2 since they

allow both 1FR and DFR distributions. These proposed models provide a large

class of distributions for fitting discrete failure data.



7 - ->~ -.. .

14

ACnOLJGK S

This research was supported by the United States Air Force Office of

Scientific Research and Army Research Office under grant number £F0S-84-0156.

REFERENCES i
[1] R. E. Barlow, D. J. Bartholomew, 3. M. Brenner, H. D. Drunk, Statistical

Inference Under Order Restrictions, John Wiley & Sons, New York, 1972.

12]- R. E. Barlow, F. _Proschan, Statistical Theory of Reliability -and Life

Testing, Holt, Rinehart & Winston, New York, 1975.

[3] Z. W. Birnbaum, S. C. Saunders, "Estimation for a family of life distri-

butions with applications to fatigue," J. Applied Probability, vol 6,

1969 Jun, pp 328-347.

[1] T. Fort, Infinite Series, Oxford University Press, London, 1930.

[5] J. D. Kalbfleisch, R. L. Prentice, The Statistical Analysis of Failure

Time Data, John Wiley & Sons, New York, 1980.

[6] N. A. Langberg, R. V. Legn, J. Lynch, F. Proachan, "Extreme points of

the class of discrete decreasing failure rate life distributions,"

Math. of Operations Research, vol 5, 1980 Feb, pp 35-42.

[7] N. A. Langberg, R. V. Legn, J. Lynch, F. Proschan, "Extreme points of

the class of discrete decreasing failure rate average life distributions,"

TIDS/Studies in the Management Sciences (S. B. Zanakis, J. S. Rustagi,

ads), North-Holland Publishing Co., vol 19, 1982, pp 297-304.

[8] W. Nelson, "Analysis of accelerated life test data - least squares

methods for the inverse power law model," IEEE Transactions on Reliability,

vol R-24, 1975, pp 103-107.

[9] A. A. Salvia, R. C. Bollinger, "On discrete hazard functions."

IEEE Transactions on Reliability, vol R-31, 1982 Dec, pp 458-459,



LIIl 0 o-.fk • - 1.2 fk o a "1n2:"

S10 0.2,

.5 *0.5 '<""

0.3

0. 1

0.3 c 0.3

0.2 3 o.2 c -0

- 0.2

0.2

0.1

5 1 0 5 10

(a) c - 0.5() cm,,05"

K Ti.r 1: ?4 d2 1. i

k "

0.3 • 2 w a

0).2
0 -

0

I

i- Ftgure 2: W, oel 2 vlth C " 0.1.



S

0

S

* C

* 0

e e
50 S S

@0

-
* S -

0 5 C

U
* S

4 C
p. __

C C C

'a

K
K.

S
.4

S
.*
Si
U
K
.4
.4

A
S

C C
. C .4 S

* .4 0
* g * b

.4

N

Sn U,

*
* CI

.4

Oe * -

* U,
U
b

a~. * W~ 4 U, Pd .4

~Q C 4D C 0 0 0



. VA V. . . .en C.4 9 V 4 4V

..

"44

* -

-4sC O0O V00 04 0

.... +,

i~~~~~b b1 ........

f . 4 P . & a . N tot m.0%0 -

"i "+ ... ............ .
*0 4 N m

W4 n C4 a g 0 % r.. N W4

100 ul u. .6 n 4 q - 9-A.4 w4l 0 C 0 0

*4 (.i C4N-d- "4 "44%

*% c h . . . . . . . . .. " 4 .4 e

9-4 w m 0 -4 fl- -To 9o..
* % 1 0000 V-4 o-0o 40%0r."

P4 1^ 0 fm. -4

in .

f..%

m. 00 0 .O0.Nh * 0 -

t4 4- 0.0

V44 en V%~ 0 4&

IM '40 r' 0% 0 &~' 4 .40 ftN f



-lo

41

49 14


